Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.11.557219

ABSTRACT

Coronavirus (CoV) replication requires efficient cleavage of viral polyproteins into an array of non-structural proteins involved in viral replication, organelle formation, viral RNA synthesis, and host shutoff. Human CoVs (HCoVs) encode two viral cysteine proteases, main protease (Mpro) and papain-like protease (PLpro), that mediate polyprotein cleavage. Using a structure-guided approach, a phenothiazine urea derivative that inhibits both SARS-CoV-2 Mpro and PLpro protease activity in vitro was identified. In silico docking studies also predicted binding of the phenothiazine to the active sites of Mpro and PLpro from distantly related alphacoronavirus, HCoV-229E (229E) and the betacoronavirus, HCoV-OC43 (OC43). The lead phenothiazine urea derivative displayed broad antiviral activity against all three HCoVs tested in cell culture infection models. It was further demonstrated that the compound inhibited 229E and OC43 at an early stage of viral replication, with diminished formation of viral replication organelles and the RNAs that are made within them, as expected following viral protease inhibition. These observations suggest that the phenothiazine urea derivative inhibits viral replication and may broadly inhibit proteases of diverse coronaviruses.

3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.10.483772

ABSTRACT

There is an outstanding need for broadly acting antiviral drugs to combat emerging viral diseases. Here, we report that thiopurines inhibit the replication of the betacoronaviruses HCoV-OC43 and SARS-CoV-2, and to a lesser extent, the alphacoronavirus HCoV-229E. 6-Thioguanine (6-TG) disrupted early stages of infection, limiting synthesis of full-length and subgenomic HCoV RNAs. Furthermore, consistent with our previous report on the effects of thiopurines on influenza A virus (IAV) glycoproteins, we observed that 6-TG inhibited accumulation of Spike glycoproteins from diverse HCoVs. Specifically, 6-TG treatment decreased the accumulation of Spike proteins and increased their electrophoretic mobility to match the properties of Spike following enzymatic removal of N-linked oligosaccharides with Peptide:N-glycosidase F (PNGaseF). SARS-CoV-2 virus-like particles (VLPs) harvested from 6-TG-treated cells were deficient in Spike. 6-TG treatment had a similar effect on lentiviruses pseudotyped with SARS-CoV-2 Spike; lentiviruses could be harvested from cell supernatants, but they were deficient in Spike and unable to infect human cells bearing ACE2 receptors. Together, these findings from complementary ectopic expression and infection models strongly indicate that defective Spike trafficking and processing is an outcome of 6-TG treatment. At low micromolar doses, the primary known mode of action of 6-TG is selective inhibition of the small GTPase Rac1. However, we show that selective chemical inhibitors of the small GTPases Rac1, CDC42 and Rho had no effect on Spike processing and accumulation, whereas the broad GTPase agonist ML099 was able to counter the effects of 6-TG, suggesting that an unknown GTPase could be the relevant 6-TG-target protein involved in regulating Spike processing and accumulation. Overall, these findings provide important clues about the mechanism of action of a candidate antiviral that can broadly target HCoVs and suggest that small GTPases may be promising targets for host-targeted antivirals.


Subject(s)
Severe Acute Respiratory Syndrome , Poult Enteritis Mortality Syndrome
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.30.319863

ABSTRACT

Enveloped viruses utilize the host cell secretory pathway to synthesize viral glycoproteins and direct them to sites of assembly. Using an image-based screen, we identified two thiopurines, 6-thioguanine (6-TG) and 6-thioguanosine (6-TGo), that selectively disrupted the processing and accumulation of influenza A virus glycoproteins hemagglutinin (HA) and neuraminidase (NA). Selective disruption of IAV glycoprotein processing and accumulation by 6-TG and 6-TGo correlated with unfolded protein response (UPR) activation. 6-TG and 6-TGo also inhibited replication of the human coronavirus OC43 (HCoV-OC43), which correlated with UPR/ISR activation and diminished accumulation of ORF1ab and nucleocapsid (N) mRNAs, which suggests broader disruption of coronavirus gene expression in ER-derived cytoplasmic compartments. The chemically similar thiopurine 6-mercaptopurine (6-MP) had little effect on the UPR and did not affect IAV or HCoV-OC43 replication. Consistent with reports on other CoV Spike (S) proteins, ectopic expression of SARS-CoV-2 S protein caused UPR activation. 6-TG inhibited accumulation of full length S0 or furin-cleaved S2 fusion proteins, but spared the S1 ectodomain. DBeQ, which inhibits the p97 AAA-ATPase required for retrotranslocation of ubiquitinated misfolded proteins during ER-associated degradation (ERAD) restored accumulation of S0 and S2 proteins in the presence of 6-TG, suggesting that 6-TG induced UPR accelerates ERAD-mediated turnover of membrane-anchored S0 and S2 glycoproteins. Taken together, these data indicate that 6-TG and 6-TGo are effective host-targeted antivirals that trigger the UPR and disrupt accumulation of viral glycoproteins. Importantly, our data demonstrate for the first time the efficacy of these thiopurines in limiting IAV and HCoV-OC43 replication in cell culture models.


Subject(s)
Poult Enteritis Mortality Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL